COMPONENTS:

- 1. Methanamine, (methylamine); CH₅N; [74-89-5]
- 2. Butane; C₄H₁₀; [106-97-8]

ORIGINAL MEASUREMENTS:

Wolff, A.; Höpfner, A.; Höpfner, H.-M. Ber. Bunsenges. Phys. Chem.

1964, 68, 410-417.

VARIABLES:

Composition, temperature

PREPARED BY:

P. G. T. Fogg

EXPERIMENTAL VALUES:

Variation of the total vapor pressure/Torr with variation of temperature and of mole fraction of ${\rm CH_5N}$ in the liquid phase, $x_{{\rm CH_5N}}$

			T/K		
^ж сн ₅ N	218.15	233.15	253.15	273.15	288.15
0	52.0	125.2	339.5	775.9	1319.4
0.0043	55.2	131.1	349.8	793.3	1348.6
0.0086	58.5	136.8	362.3	814.7	1380.5
0.0334	68.1	160.3	417.8	914.8	1523.8
0.1089	82.3	196.0	513.2	1123.1	1860.3
0.134	83.7	200.5	530.3	1167.9	1934.3
0.208	85.3	207.9	560.9	1257.5	2105.1
0.257	86.2	211.4	575.6	1305.5	2203.1
0.314	86.6	212.0	580.7	1324.4	2225.1
0.365	86.2	212.9	586.4	1342.0	2283.9
0.454	86.6	213.9	590.8	1362.4	2329.1
0.517	86.8	214.1	595.7	1369.4	2349.1
0.532	86.5	213.6	592.4	1369.5	2352.9
0.577	86.6	214.1	592.2	1372.1	2359.7
0.602	86.3	213.4	591.0	1372.0	2362.4
0.654	86.2	212.9	589.5	1370.3	2361.2
0.731	85.3	211.4	585.6	1361.7	2344.0
0.738	85.4	210.3	583.6	1356.7	2343.0
0.774	84.9	209.6	579.3	1347.2	2325.6

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Apparatus described previously was used (1). Liquid mixtures of accurately known composition were introduced into a cell held in a thermostat controlled to $\pm~0.02^{\circ}$ C. The total vapor pressures were measured by a mercury manometer.

The authors calculated activity coefficients of each component from the vapor pressure data by a method described by Barker (2). Constants for Redlich-Kister equations (3) for activity coefficients were evaluated and reported.

- SOURCE AND PURITY OF MATERIALS:
- From commercial reinst methylammonium chloride by reaction with KOH; gas dried with KOH and Li; liquified gas treated with Li and repeatedly fractionated until first and last fractions had vapor pressures between 2191 and 2193 Torr at 20°C.

Cont.

Commercial product; dried with P₂O₅ repeatedly fractionated until first and last fractions had the same vapor pressures measured by the manometer as described for

ESTIMATED ERROR:

Hexane (1).

 $\delta T/K = \pm 0.02$ (estimated by authors)

REFERENCES:

- Wolff, H.; Höpfner, A. Z. Elektrochem. <u>1962</u>, 66, 149.
- 2. Barker, J.A. Aust. J. Chem. <u>1953</u>, 6, 207.
- Redlich, O.; Kister, A.T. Ind. Eng. Chem. <u>1948</u>, 21, 345.

[74-	aamine, (methy: -89-5] e; C ₄ H ₁₀ ; [106-	J		Höpfner, A.; H	
VARIABLES: Composition, temperature			PREPARED BY:	. G. T. Fogg	
EXPERIMENTA	L VALUES: Con	:.	T/K		
[∞] CH ₅ N	218.15	233.15	253.15	273.15	288.15
0.847 0.938 0.957	82.5 70.6 67.1 45.8	202.4 177.4 169.3 126.3	561.2 500.8 482.2 394.2	1308.6 1198.0 1158.3 1001.8	2269.0 2102.3 2042.7 1826.3

760 Torr = 1 atm = 1.013×10^5 Pa

Constants for calculation of activity coefficients from the Redlich-Kister equations given below

T/K	A	В	С
218.15 223.15 228.15 233.15 243.15 243.15 253.15 263.15 273.15	2.261 2.213 2.143 2.095 1.976 1.857 1.741 1.623	-0.054 -0.030 -0.017 -0.008 +0.008 +0.032 +0.066 +0.079	0.412 0.381 0.371 0.353 0.313 0.259 0.214
283.15 288.15	1.517 1.461	+0.087 +0.095	0.157 0.150

$$\ln f_1 = A x_2^2 - B x_2^2 (1 - 4 x_1) + C x_2^2 (1 - 8 x_1 + 12 x_1^2)
\ln f_2 = A x_1^2 + B x_1^2 (1 - 4 x_2) + C x_1^2 (1 - 8 x_2 + 12 x_2^2)$$

where f_1 = activity coefficient of methylamine f_2 = activity coefficient of butane x_1 = mole fraction of methylamine in the liquid phase x_2 = mole fraction of butane in the liquid phase

1. Methanamine, (methylamine); CH_EN;

2. Hexane, $C_{6}H_{14}$; [110-54-3]

[74 - 89 - 5]

ORIGINAL MEASUREMENTS:

Wolff, H.; Höpfner, A.

Z. Elektrochem. 1962, 66, 149-159.

VARIABLES:

COMPONENTS:

PREPARED BY:

Composition, temperature

P. G. T. Fogg

EXPERIMENTAL VALUES:

Variation of the total vapor pressure/Torr with variation of temperature and of mole fraction of CH_5N in the liquid phase, x_{CH_5N}

 x_{CH_5} N 218.15 223.15 228.15 233.15 243.15 253.15 263.15 273.15 283.15 293.15

1	0	0.97*	1.52*	2.33	* 3.48 ²	7.34	* 14.4	26.5	46.0	76.1	121.7
ļ	0.0068	5.9	7.8	10.1	12.6	20.8	32.9	51.4	78.7	118.5	174.9
i	0.0154	11.4	14.3	18.3	23.2	36.0	54.7	80.9	118.4	169.6	239.5
Ì	0.0274	17.3	22.6	28.6	36.1	55.9	83.1	120.3	171.2	238.5	327.6
	0.0415	22.7	30.2	38.4	48.7	75.4	112.8	162.4	228.5	314.3	424.8
	0.0626	29.0	38.5	49.8	63.7	100.1	150.7	217.3	305.9	417.7	560.3
	0.086	32.9	44.0	58.0	74.8	119.9	181.4	264.3	371.0	506.2	672.6
	0.129	37.7	51.1	68.1	89.5	147.5	228.7	338.1	482.3	663.5	887.5
ı	0.175	39.8	55.1	74.5	99.2	166.2	263.1	395.1	569.5	794.8	1074.1
i	0.215	41.1	57.7	77.9	103.9	177.4	284.1	432.8	631.4	887.7	1208.6
ı	0.282	42.4	59.2	81.1	109.1	189.8	308.3	476.2	706.4	1006.9	1389.4
ı	0.360	43.6	61.2	83.9	113.6	199.0	327.0	510.9	767.8	1107.1	1545.1
	0.449	43.4	61.5	84.7	115.2	204.0	339.3	536.0	814.4	1188.5	1678.d
1	0.543	43.5	61.2	85.4	116.7	207.4	348.6	554.7	849.9	1250.9	1781.9
ļ	0.629	43.7	62.1	86.1	117.9	210.2	355.8	569.7	878.1	1300.4	1863.2
	0.662	43.7	62.0	86.3	117.7	210.6	356.4	574.8	885.3	1314.8	1887.6
	0.735	44.0	62.4	86.7	118.9	214.0	362.3	583.0	905.0	1348.1	1943.3
	0.783	43.8	62.1	86.8	119.2	215.0	365.6	590.1	917.2	1370.0	1982.5

Cont.

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

Liquid mixtures of accurately known composition were introduced into a cell held in a thermostat controlled to \pm 0.02°C. The total vapor pressures were measured by a mercury manometer.

The authors calculated activity coefficients of each component from the vapor pressure data by a method described by Barker (2). Constants for Redlich-Kister equations (3) for activity coefficients were evaluated and reported. The compositions of the vapor phase were also calculated by the authors.

- SOURCE AND PURITY OF MATERIALS:
 1. From commercial reinst methylammonium chloride by reaction with KOH; gas dried with KOH and Na; liquified gas treated with Li and repeatedly fractionated until first and last fractions had vapor pressures between 2191 and 2193 Torr at 20°C.
- Commercial product; dried over P₂O₅ distilled and repeatedly fractionated until first and last fractions had the same vapor pressures as measured by the manometer

ESTIMATED ERROR:

 $\delta T/K = \pm 0.02$ (estimated by authors)

REFERENCES:

- 1. Wolff, A.; Höpfner, A.; Höpfner, H.-M. Ber. Bunsenges. Phys. Chem. <u>1964</u>, 68, 410.
- 2. Barker, J.A. Aust. J. Chem. 1953, 6, 207.
- 3. Redlich, O.; Kister, A.T. Ind. Eng. Chem. 1948, 21, 345.

COMPONENTS: ORIGINAL MEASUREMENTS: 1. Methanamine, (methylamine); CH₅N; Wolff, H; Höpfner, A. [74 - 89 - 5]Z. Elektrochem. 1962, 66, 149-159. 2. Hexane, C₆H₁₄; [110-54-3] VARIABLES: PREPARED BY: Composition, temperature P. G. T. Fogg EXPERIMENTAL VALUES: Cont.

T/K

^xCH₅N 218.15 223.15 228.15 233.15 243.15 253.15 263.15 273.15 283.15 293.15

760 Torr = 1 atm = 1.013×10^5 Pa

*by extrapolation

[‡]corrected value of 45.8 given in later ref. (1) Constants* for calculation of activity coefficients

T/K	A	В	С
218.15 223.15 228.15 233.15 243.15 253.15 263.15 273.15 283.15	2.392 2.338 2.266 2.213 2.087 1.956 1.833 1.709 1.588 1.470	0.122 0.130 0.138 0.150 0.163 0.180 0.198 0.214 0.224	0.527 0.472 0.395 0.384 0.300 0.250 0.212 0.185 0.164
293.15	1.470	0.231	0.148

from the Redlich-Kister equations given below

$$\ln f_1 = A x_2^2 - B x_2^2 (1 - 4 x_1) + C x_2^2 (1 - 8 x_1 + 12 x_1^2)$$

$$\ln f_2 = A x_1^2 + B x_1^2 (1 - 4 x_2) + C x_1^2 (1 - 8 x_2 + 12 x_2^2)$$

= activity coefficient of methylamine
= activity coefficient of hexane
= mole fraction of methylamine in the liquid phase
= mole fraction of hexane in the liquid phase.

* revised values given by the authors in a later paper (1).

ORIGINAL MEASUREMENTS: 1. Methanamine, (methylamine); CH₅N; Wolff, H.; Höpfner, A.; Höpfner, H.-M [74-89-5] 2. Nonane; C₉H₂₀; [111-84-2] VARIABLES: Composition, temperature ORIGINAL MEASUREMENTS: Wolff, H.; Höpfner, A.; Höpfner, H.-M Ber. Bunsenges. Phys. Chem. 1964, 68, 410-417. PREPARED BY: P. G. T. Fogg

EXPERIMENTAL VALUES:

Variation of the total vapor pressure/Torr with variation of temperature and of mole fraction of ${\rm CH_5N}$ in the liquid phase, $x_{\rm CH_5N}$

		Ţ	/K	
^x CH ₅ N	233.15	253.15	273.15	293.15
0	0.0	0.2	0.9	3.4
0.0083	10.2	20.6	37.0	61.5
0.0165	19.3	39.5	71.3	116.7
0.0245	27.6	56.8	103.4	169.8
0.0324	35.1	73.7	134.0	221.2
0.0403	41.9	89.1	163.3	270.8
0.0452	45.7	97.0	176.0	286.3
0.0862	72.2	162.2	308.0	515.1
0.1278	88.6	212.5	420.0	725.1
0.188	103.1	263.2	546.9	977.5
0.251	111.3	297.9	644.4	1193.2
0.311	115.9	319.7	714.2	1359.2
0.381	118.9	337.1	774.3	1518.4
0.440	120.2	347.0	809.9	1613.1
0.533	121.2	357.1	853.4	1745.7
0.588	121.4	361.5	872.4	1807.1
0.692	121.6	366.3	899.5	1898.2
			Cont.	

AUXILIARY INFORMATION

METHOD / APPARATUS / PROCEDURE:

Apparatus described previously was used (1). Liquid mixtures of accurately known composition were introduced into a cell held in a thermostat controlled to ± 0.02°C. The total vapor pressures were measured by a mercury manometer.

The authors calculated activity coefficients of each component from the vapor pressure data by a method described by Barker (2). Constants for Redlich-Kister equations (3) for activity coefficients were evaluated and reported.

SOURCE AND PURITY OF MATERIALS:

- 1. From commercial reinst methylammonium chloride by reaction with KOH; gas dried with KOH and Na; liquified gas treated with Li and repeatedly fractionated until first and last fractions had vapor pressures between 2191 and 2193 Torr at 20°C (1).
- 2. Commercial product; dried over P₂O₅; distilled and repeatedly fractionated until first and last fractions had the same vapor pressures as measured by the

ESTIMATED ERROR: manometer (1).

 $\delta T/K = \pm 0.02$ (estimated by authors)

REFERENCES:

- Wolff, H.; Höpfner, A. Z. Elektrochem. <u>1962</u>, 66, 149.
- Barker, J.A. Aust. J. Chem. <u>1953</u>, 6, 207.
- Redlich, O.; Kister, A.T. Ind. Eng. Chem. 1948, 21, 345.

COMPONENTS: 1. Methanamine, (methylamine); CH ₅ N; [74-89-5] 2. Nonane; C ₉ H ₂₀ ; [111-84-2]			Wolff,	MEASUREMENTS: H.; Höpfner, A.; Sunsenges. Phys. C 68, 410-417.	
VARIABLES:	osition, temperatur	re	PREPARED	P. G. T. Fogg	ſ
EXPERIMENTAL \	ALUES: Cont.		т/	rk	
[∞] CH ₅ N	233.15	253	.15	273.15	293.15
0.735 0.767 0.938 0.968	122.4 122.2 122.3 123.4 126.3	368 369 379 383 394	.3 .2 .6	909.1 915.7 958.7 974.4 1001.8	1932.4 1954.2 2100.7 2129.8 2191.7

760 Torr = 1 atm = 1.013×10^5 Pa

Constants for calculation of activity coefficients from the Redlich-Kister equations given below

T/K	A	В	С
233.15 243.15 253.15 263.15 273.15 283.15	2.323 2.174 2.024 1.881 1.738 1.597	0.338 0.362 0.379 0.392 0.399 0.401	0.393 0.336 0.286 0.255 0.229
293.15	1.463	0.401	0.204

$$\ln f_1 = A x_2^2 - B x_2^2 (1 - 4 x_1) + C x_2^2 (1 - 8 x_1 + 12 x_1^2)$$

$$\ln f_2 = A x_1^2 + B x_1^2 (1 - 4 x_2) + C x_1^2 (1 - 8 x_2 + 12 x_2^2)$$

where f_1 = activity coefficient of methylamine

 f_2 = activity coefficient of nonane

 x_1 = mole fraction of methylamine in the liquid phase

 x_2^- = mole fraction of nonane in the liquid phase.

COMPONENTS: 1. Methanamine, (methylamine); CH ₅ N; [74-89-5] 2. Decane; C ₁₀ H ₂₂ ; [124-18-5]	ORIGINAL MEASUREMENTS: Gerrard, W. Solubility of Gases and Liquids, Plenum, 1976, Chapter 10.
VARIABLES:	PREPARED BY:
Temperature, pressure	C. L. Young

EXPERIMENTAL	VALUES:		
T/K	P/mmHg	<i>P</i> /10 ⁵ Pa	Mole fraction of methylamine in liquid, "CH ₃ NH ₂
273.15	100 200 300 400 500 600 700 760	0.133 0.267 0.400 0.533 0.667 0.800 0.933	0.028 0.061 0.097 0.141 0.193 0.262 0.350 0.413
278.15	100 200 300 400 500 600 700 760	0.133 0.267 0.400 0.533 0.667 0.800 0.933	0.022 0.047 0.075 0.109 0.144 0.190 0.256 0.318
283.15	100 200 300 400 500 600 700 760	0.133 0.267 0.400 0.533 0.667 0.800 0.933 1.013	0.020 0.044 0.070 0.100 0.132 0.168 0.206 0.253

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Amine was passed into a known weight pf pure liquid in a bubbler tube at a total pressure measured by a manometer assembly. The amount of absorbed gas was estimated by weighing. The temperature was manually controlled to within 0.2K.

The apparatus and procedure are described by Gerrard [1,2].

SOURCE AND PURITY OF MATERIALS:

- 1. British Drug Houses or Cambrian Gases sample.
- 2. Purified and attested by conventional procedures.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.1; \quad \delta x/x = \pm 3$ %

(estimated by compiler)

REFERENCES:

- 1. Gerrard, W.
 J. Appl. Chem. Biotechnol. 1972, 22 623-650.
- 2. Gerrard, W.

Solubility of Gases and Liquids. Plenum Press, New York. 1976.

Chapter 1.

COMPONENTS:

- 1. Methanamine (methylamine);
 CH₅N; [74-89-5]
- 2. Decane; C₁₀H₂₂; [124-18-5]

ORIGINAL MEASUREMENTS:

Gerrard, W.

Solubility of Gases and Liquids

Plenum, 1976, Chapter 10.

EXPERIMENTAL VALUES:

Mole fraction of methylamine

T/K	P/mmHg	<i>P</i> /10 ⁵ Pa	in liquid, CH ₃ NH ₂
293.15	100	0.133 0.267	0.011 0.023
	300 400	0.400 0.533	0.037 0.055
	500 600	0.667 0.800 0.933	0.078 0.103 0.134
	700 760	1.013	0.156

100		Methanami	ne Solubilities
COMPONENTS:			ORIGINAL MEASUREMENTS:
1. Methanamine; (methylamine); CH_5N ; $[74-89-5]$			Gerrard, W.
2. Aromatic hydrocarbons			Solubility of Gases and Liquids, Plenum, 1976, Chapter 10.
VARIABLES:			DOUBLE DE DE LA COMPANION DE L
Pressure			PREPARED BY: C. L. Young
EXPERIMENTAL VALUES:			Mole fraction of methylamine in liquid,
T/K	P/mmHg	<i>P</i> /10 ⁵ Pa	^x CH₃NH₂
Benzene; C ₆ H ₆ ; [71-43-2] 283.15 760 1.013 0.408			
283.15	Methyll 760	benzene (tolue 1.013	ne); C ₇ H ₈ ; [108-88-3] 0.393
1,3-Dimethylbenzene (m-xylene); C ₈ H ₁₀ ; [108-38-3]			
283.15	100 200 300	0.133 0.267 0.400	0.027 0.064 0.100
	400 500 600	0.533 0.667 0.800	0.145 0.196 0.275
	700 760	0.933 1.013	0.320 0.358
	1,3,5-Trimethy	lbenzene (mes	itylene); C ₉ H ₁₂ ; [108-67-8]
283.15	100 200 300 400	0.133 0.267 0.400 0.533	0.032 0.068 0.109 0.155
	500 600	0.667 0.800	0.200 0.253
	700 760	0.933 1.013	0.310 0.326
		AUXILIARY	Y INFORMATION
METHOD/APPARATUS/PROCEDURE:			SOURCE AND PURITY OF MATERIALS:
	passed into a iquid in a bub		1. British Drug Houses or Cambrian Gases sample.

of pure liquid in a bubbler tube at a total pressure measured by a manometer assembly. The amount of absorbed 2. Purified gas was estimated by weighing. The temperature was manually controlled to within 0.2K. The apparatus and procedure are described by Gerrard [1,2].

- 2. Purified and attested by conventional procedures.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.1; \quad \delta x/x = \pm 3$ % (estimated by compiler)

REFERENCES:

- Gerrard, W.
 Appl. Chem. Biotechnol. 1972, 22 623-650.
- 2. Gerrard, W.

Solubility of Gases and Liquids. Plenum Press, New York. 1976. Chapter 1.